Temperature-sensitive reaction intermediate of F1-ATPase

نویسندگان

  • Rikiya Watanabe
  • Ryota Iino
  • Katsuya Shimabukuro
  • Masasuke Yoshida
  • Hiroyuki Noji
چکیده

F(1)-ATPase is a rotary molecular motor that makes 120 degrees stepping rotations, with each step being driven by a single-ATP hydrolysis. In this study, a new reaction intermediate of F(1)-ATPase was discovered at a temperature below 4 degrees C, which makes a pause at the same angle in its rotation as when ATP binds. The rate constant of the intermediate reaction was strongly dependent on temperature with a Q(10) factor of 19, implying that the intermediate reaction accompanies a large conformational change. Kinetic analyses showed that the intermediate state does not correspond to ATP binding or hydrolysis. The addition of ADP to the reaction mixture did not alter the angular position of the intermediate state, but specifically lengthened the time constant of this state. Conversely, the addition of inorganic phosphate caused a pause at an angle of +80 degrees from that of the intermediate state. These observations strongly suggest that the newly found reaction intermediate is an ADP-releasing step.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization of the temperature-sensitive reaction of F1-ATPase by using single-molecule manipulation

F1-ATPase (F1) is a rotary motor protein that couples ATP hydrolysis to mechanical rotation with high efficiency. In our recent study, we observed a highly temperature-sensitive (TS) step in the reaction catalyzed by a thermophilic F1 that was characterized by a rate constant remarkably sensitive to temperature and had a Q10 factor of 6-19. Since reactions with high Q10 values are considered to...

متن کامل

Single-molecule Study on the Temperature-sensitive Reaction of F1-ATPase with a Hybrid F1 Carrying a Single β(E190D)*

F(1)-ATPase is a rotary molecular motor in which the gamma-subunit rotates against the alpha(3)beta(3) cylinder. The unitary gamma-rotation is a 120 degrees step comprising 80 and 40 degrees substeps, each of these initiated by ATP binding and ADP release and by ATP hydrolysis and inorganic phosphate release, respectively. In our previous study on gamma-rotation at low temperatures, a highly te...

متن کامل

F1-ATPase: a highly coupled reversible rotary motor.

F1 (F1-ATPase) is a highly coupled rotary molecular motor and hydrolyses three ATP molecules per turn (3 ATP/turn). Recently, we have developed femtolitre reaction chamber arrays for highly sensitive measurement of biological reactions. By combining this technique with the rotating magnetic tweezers, the coupling ratio of the reverse reaction, ATP synthesis catalysed by single F1 molecules, has...

متن کامل

Kinetic mechanism of mitochondrial adenosine triphosphatase. Inhibition by azide and activation by sulphite.

1. The initial rapid phase of ATP hydrolysis by bovine heart submitochondrial particles or by soluble F1-ATPase is insensitive to anion activation (sulphite) or inhibition (azide). 2. The second slow phase of ATP hydrolysis is hyperbolically inhibited by azide (Ki approximately 10(-5) M); the inosine triphosphatase activity of submitochondrial particles or F1-ATPase is insensitive to azide or s...

متن کامل

Timing of inorganic phosphate release modulates the catalytic activity of ATP-driven rotary motor protein

F1-ATPase is a rotary motor protein driven by ATP hydrolysis. The rotary motion of F1-ATPase is tightly coupled to catalysis, in which the catalytic sites strictly obey the reaction sequences at the resolution of elementary reaction steps. This fine coordination of the reaction scheme is thought to be important to achieve extremely high chemomechanical coupling efficiency and reversibility, whi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • EMBO Reports

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2008